Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Animal ; : 101141, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38641517

RESUMO

Interest in dairy cow health continues to grow as we better understand health's relationship with production potential and animal welfare. Over the past decade, efforts have been made to incorporate health traits into national genetic evaluations. However, they have focused on the mature cow, with calf health largely being neglected. Diarrhoea and respiratory disease comprise the main illnesses with regard to calf health. Conventional methods to control calf disease involve early separation of calves from the dam and housing calves individually. However, public concern regarding these methods, and growing evidence that these methods may negatively impact calf development, mean the dairy industry may move away from these practices. Genetic selection may be a promising tool to address these major disease issues. In this review, we examined current literature for enhancing calf health through genetics and discussed alternative approaches to improve calf health via the use of epidemiological modelling approaches, and the potential of indirectly selecting for improved calf health through improving colostrum quality. Heritability estimates on the observed scale for diarrhoea ranged from 0.03 to 0.20, while for respiratory disease, estimates ranged from 0.02 to 0.24. The breadth in these ranges is due, at least in part, to differences in disease prevalence, population structure, data editing and models, as well as data collection practices, which should be all considered when comparing literature values. Incorporation of epidemiological theory into quantitative genetics provides an opportunity to better determine the level of genetic variation in disease traits, as it accounts for disease transmission among contemporaries. Colostrum intake is a major determinant of whether a calf develops either respiratory disease or diarrhoea. Colostrum traits have the advantage of being measured and reported on a continuous scale, which removes the issues classically associated with binary disease traits. Overall, genetic selection for improved calf health is feasible. However, to ensure the maximum response, first steps by any industry members should focus efforts on standardising recording practices and encouragement of uploading information to genetic evaluation centres through herd management software, as high-quality phenotypes are the backbone of any successful breeding programme.

2.
J Dairy Sci ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38310964

RESUMO

The large-scale recording of traits such as feed efficiency and methane emissions for use in genetic improvement programs is complex, costly, and time-consuming. Therefore, heritable traits that can be continuously recorded in dairy herds and are correlated to feed efficiency and methane emission traits could provide useful information for genetic evaluation. Rumination time has been suggested to be associated with feed efficiency, methane production (methane emission in g/day), and production traits at the phenotypic level. Therefore, the objective of this study was to investigate the genetic relationships among rumination time, feed efficiency, methane and production traits using 7,358 records from 656 first lactation Holstein cows. The estimated heritabilities were moderate for rumination time (0.45 ± 0.14), methane production (0.36 ± 0.12), milk yield (0.40 ± 0.08), fat yield (0.29 ± 0.06), protein yield (0.32 ± 0.07), and energy corrected milk (0.28 ± 0.07), while low and non-significant for feed efficiency (0.15 ± 0.07), which was defined as the residual of the multiple linear regression of DMI on ECM and MBW. A favorable negative genetic correlation was estimated between rumination time and methane production (-0.53 ± 0.24), while a positive favorable correlation was estimated between rumination time and energy corrected milk (0.49 ± 0.11). The estimated genetic correlation of rumination time with feed efficiency (-0.01 ± 0.17) was not significantly different from zero but showed a trend of a low correlation with dry matter intake (0.21 ± 0.13, P = 0.11). These results indicate that rumination time is genetically associated with methane production and milk production traits, but high standard errors indicate that further analyses should be conducted to verify these findings when more data for rumination time, methane production and feed efficiency become available.

3.
J Dairy Sci ; 107(2): 1022-1034, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37730178

RESUMO

Genetic selection could be a tool to help improve the health and welfare of calves; however, to date, there is limited research on the genetics of calfhood diseases. This study aimed to understand the current impact of calf diseases, by investigating incidence rates, estimating genetic parameters, and providing industry recommendations to improve calf disease recording practices on farms. Available calf disease data composed of 69,695 Holstein calf disease records for respiratory problems (RESP) and diarrhea (DIAR), from 62,361 calves collected on 1,617 Canadian dairy herds from 2006 to 2021. Single- and multiple-trait analysis using both a threshold and linear animal model for each trait were evaluated. Furthermore, each trait was analyzed using 2 scenarios with respect to minimum disease incidence threshold criterion (herd-year incidence of at least 1% and 5%) to highlight the effect of different filtering thresholds on selection potential. Observed scale heritability estimates for RESP and DIAR ranged from 0.02 to 0.07 across analyses, while estimated genetic correlations between the traits ranged from 0.50 to 0.62. Sires were compared based on their estimated breeding value and their diseased daughter incidence rates. On average, calves born to the bottom 10% of sires were 1.8 times more likely to develop RESP and 1.9 times to develop DIAR compared with daughters born to the top 10% of sires. Results from the current study are promising for the inclusion of both DIAR and RESP in Canadian genetic evaluations. However, for effective genetic evaluation, standardized approaches on data collection and industry outreach to highlight the importance of collecting and uploading this information to herd management software is required. In particular, it is important that the herd management software is accessible to the national milk recording system to allow for use in national genetic evaluation.


Assuntos
Doenças dos Bovinos , Leite , Animais , Bovinos/genética , Canadá , Fenótipo , Doenças dos Bovinos/genética , Doenças dos Bovinos/epidemiologia , Diarreia/veterinária , Seleção Genética , Indústria de Laticínios/métodos
4.
J Dairy Sci ; 107(3): 1523-1534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37690722

RESUMO

Feed efficiency has become an increasingly important research topic in recent years. As feed costs rise and the environmental impacts of agriculture become more apparent, improving the efficiency with which dairy cows convert feed to milk is increasingly important. However, feed intake is expensive to measure accurately on large populations, making the inclusion of this trait in breeding programs difficult. Understanding how the genetic parameters of feed efficiency and traits related to feed efficiency vary throughout the lactation period is valuable to gain understanding into the genetic nature of feed efficiency. This study used 121,226 dry matter intake (DMI) records, 120,500 energy-corrected milk (ECM) records, and 98,975 metabolic body weight (MBW) records, collected on 7,440 first-lactation Holstein cows from 6 countries (Canada, Denmark, Germany, Spain, Switzerland, and the United States), from January 2003 to February 2022. Genetic parameters were estimated using a multiple-trait random regression model with a fourth-order Legendre polynomial for all traits. Weekly phenotypes for DMI were re-parameterized using linear regressions of DMI on ECM and MBW, creating a measure of feed efficiency that was genetically corrected for ECM and MBW, referred to as genomic residual feed intake (gRFI). Heritability (SE) estimates varied from 0.15 (0.03) to 0.29 (0.02) for DMI, 0.24 (0.01) to 0.29 (0.03) for ECM, 0.55 (0.03) to 0.83 (0.05) for MBW, and 0.12 (0.03) to 0.22 (0.06) for gRFI. In general, heritability estimates were lower in the first stage of lactation compared with the later stages of lactation. Additive genetic correlations between weeks of lactation varied, with stronger correlations between weeks of lactation that were close together. The results of this study contribute to a better understanding of the change in genetic parameters across the first lactation, providing insight into potential selection strategies to include feed efficiency in breeding programs.


Assuntos
Lactação , Leite , Animais , Feminino , Bovinos/genética , Lactação/genética , Ingestão de Alimentos/genética , Agricultura , Fenótipo
5.
J Dairy Sci ; 106(12): 9115-9124, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641249

RESUMO

Directly measuring individual cow energy balance is not trivial. Other traits such as body condition score (BCS) and BCS change (ΔBCS) can, however, be used as an indicator of cow energy status. Body condition score is a metric used worldwide to estimate cow body reserves, but the estimation of ΔBCS was, until now, conditional on the availability of multiple BCS assessments. The aim of the present study was to estimate ΔBCS from milk mid-infrared (MIR) spectra and days in milk (DIM) in intensively fed dairy cows using statistical prediction methods. Daily BCS was interpolated from cubic splines fitted through the BCS records and daily ΔBCS was calculated from these splines. The ΔBCS records were merged with milk MIR spectra recorded on the same week. The dataset comprised 37,077 ΔBCS phenotypes across 9,403 lactations from 6,988 cows in 151 herds based in Quebec, Canada. Partial least squares regression (PLSR) and a neural network (NN) were then used to estimate ΔBCS from (1) MIR spectra only, (2) DIM only, or (3) MIR spectra and DIM together. The ΔBCS data in both the first 120 and 305 DIM of lactation were used to develop the estimates. Daily ΔBCS had a standard deviation of 4.40 × 10-3 BCS units in the 120-d dataset and of 3.63 × 10-3 BCS units in the 305-d dataset. A 4-fold cross-validation was used to calibrate and test the prediction equations. External validation was also conducted using more recent years of data. Irrespective of whether based on the first 120 or 305 DIM, or when MIR spectra only, DIM only or MIR spectra and DIM were jointly used as prediction variables, NN produced the lowest root mean square error (RMSE) of cross-validation (1.81 × 10-3 BCS units and 1.51 × 10-3 BCS units, respectively, using the 120-d and 305-d dataset). Relative to predictions for the entire 305 DIM, the RMSE of cross-validation was 15.4% and 1.5% lower in the first 120 DIM when using PLSR and NN, respectively. Predictions from DIM only were more accurate than those using just MIR spectra data but, irrespective of the dataset and of the prediction model used, combining DIM information with MIR spectral data as prediction variables reduced the RMSE compared with the inclusion of DIM alone, albeit the benefit was small (the RMSE from cross-validation reduced by up to 5.5% when DIM and spectral data were jointly used as model features instead of DIM only). However, when predicting extreme ΔBCS records, the MIR spectral data were more informative than DIM. Model performance when predicting ΔBCS records in future years was similar to that from cross-validation demonstrating the ability of MIR spectra of milk and DIM combined to estimate ΔBCS, particularly in early lactation. This can be used to routinely generate estimates of ΔBCS to aid in day-to-day individual cow management.


Assuntos
Lactação , Leite , Gravidez , Feminino , Bovinos , Animais , Leite/química , Espectrofotometria Infravermelho/veterinária , Espectrofotometria Infravermelho/métodos , Colostro , Metabolismo Energético
6.
J Dairy Sci ; 106(10): 6995-7007, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562648

RESUMO

Heat stress is a prominent issue in livestock production, even for intensively housed dairy herds in Canada. Production records and meteorological data can be combined to assess heat tolerance in dairy cattle. The overall aim of this study was to evaluate the possibility of genetic evaluation for heat tolerance in Canadian dairy cattle. The 2 specific objectives were (1) to estimate the genetic parameters for milk, fat, and protein yield for Holsteins while accounting for high environmental heat loads, and (2) to determine if a genotype-by-environment interaction causes reranking of top-ranked sires between environments with low and high heat loads. A repeatability test-day model with a heat stress function was used to evaluate the genetic merit for milk, fat, and protein yield under heat stress and at thermal comfort for first parity in 5 regions in Canada. The heat stress function for each trait was defined using a specific temperature-humidity index (THI) threshold. The purpose of this function was to quantify the level of heat stress that was experienced by the dairy cattle. The estimated genetic correlation between the general additive genetic effect and the additive effect on the slope of the change in the trait phenotype for milk, fat, and protein yield ranged from -0.16 to -0.30, -0.20 to -0.44, and -0.28 to -0.42, respectively. These negative correlations imply that there is an antagonistic relationship between sensitivity to heat stress and level of production. The heritabilities for milk, fat, and protein yield at 15 units above the THI threshold ranged from 0.15 to 0.27, 0.11 to 0.15, and 0.11 to 0.15, respectively. Finally, the rank correlations between the breeding values from a repeatability model with no heat stress effect and the breeding values accounting for heat stress for the 100 top-ranked bulls indicated possible interaction between milk production traits and THI, resulting in substantial reranking of the top-ranked sires in Canada, especially for milk yield. This is the first study to implement weather data from the NASA POWER database in a genetic evaluation of heat tolerance in dairy cattle. The NASA POWER database is a novel alternative meteorological resource that is potentially more reliable and consistent and with broader coverage than weather station data increasing the number of animals that could be included in a heat stress evaluation.


Assuntos
Doenças dos Bovinos , Transtornos de Estresse por Calor , Termotolerância , Gravidez , Feminino , Estados Unidos , Masculino , Bovinos/genética , Animais , Termotolerância/genética , Lactação/genética , United States National Aeronautics and Space Administration , Temperatura Alta , Canadá , Tempo (Meteorologia) , Leite/metabolismo , Umidade , Transtornos de Estresse por Calor/veterinária , Doenças dos Bovinos/metabolismo
7.
J Dairy Sci ; 106(2): 1142-1158, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36567248

RESUMO

Weather station data and test-day production records can be combined to quantify the effects of heat stress on production traits in dairy cattle. However, meteorological data sets that are retrieved from ground-based weather stations can be limited by spatial and temporal data gaps. The National Aeronautics and Space Administration Prediction of Worldwide Energy Resources (NASA POWER) database provides meteorological data over regions where surface measurements are sparse or nonexistent. The first aim of this study was to determine whether NASA POWER data are a viable alternative resource of weather data for studying heat stress in Canadian Holsteins. The results showed that average, minima, and maxima ambient temperature and dewpoint temperature as well as 4 different types of temperature-humidity index (THI) values from NASA POWER were highly correlated to the corresponding values from weather stations (regression R2 > 0.80). However, the NASA POWER values for the daily average, minima, and maxima wind speed and relative humidity were poorly correlated to the corresponding weather station values (regression R2 = 0.10 to 0.49). The second aim of this study was to quantify the influence of heat stress on Canadian dairy cattle. This was achieved by determining the THI values at which milk, protein, and fat yield started to decline due to heat stress as well as the rates of decline in these traits after the respective thresholds, using segmented polynomial regression models. This was completed for both primiparous and multiparous cows from 5 regions in Canada (Ontario, Quebec, British Columbia, the Prairies, and the Atlantic Maritime). The results showed that all production traits were negatively affected by heat stress and that the patterns of responses for milk, fat, and protein yields to increasing THI differed from each other. We found 3 THI thresholds for milk yield, 1 for fat yield, and 2 for protein yield. All thresholds marked a change in rate of decrease in production yield per unit THI, except for the first milk yield threshold, which marked a greater rate of increase. The first thresholds for milk yield ranged between 47 and 50, the second thresholds ranged between 61 and 69, and the third thresholds ranged between 72 and 76 THI units. The single THI threshold for fat yield ranged between 48 and 55 THI units. Finally, the first and second thresholds ranged between 58 and 62 THI units and 72 and 73 THI units for protein yield, respectively.


Assuntos
Doenças dos Bovinos , Transtornos de Estresse por Calor , Estados Unidos , Gravidez , Feminino , Bovinos , Animais , Lactação/fisiologia , United States National Aeronautics and Space Administration , Leite/metabolismo , Resposta ao Choque Térmico/fisiologia , Umidade , Transtornos de Estresse por Calor/veterinária , Colúmbia Britânica , Temperatura Alta , Doenças dos Bovinos/metabolismo
8.
Animal ; 16(3): 100469, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35190321

RESUMO

Methane emission is not included in the current breeding goals for dairy cattle mainly due to the expense and difficulty in obtaining sufficient data to generate accurate estimates of the relevant traits. While several models have been developed to predict methane emission from milk spectra using reference methane data obtained by the respiration chamber, SF6 and sniffer methods, the prediction of methane emission from milk mid-infrared (MIR) spectra using reference methane data collected by the GreenFeed system has not yet been explored. Methane emission was monitored for 151 cows using the GreenFeed system. Prediction models were developed for daily and average (for the trial period of 12 or 14 days) methane production (g/d), yield (g/kg DM intake (DMI)) and intensity (g/kg of fat- and protein-corrected milk) using partial least squares regression. The predictions were evaluated in 100 repeated validation cycles, where animals were randomly partitioned into training (80%) and testing (20%) populations for each cycle. The best performing model was observed for average methane intensity using MIR, parity and DMI with validation coefficient of determination (R2val) and RMSE of prediction of 0.66 and 4.7 g/kg of fat- and protein-corrected milk, respectively. The accuracy of the best models for average methane production and average methane yield were poor (R2val = 0.28 and 0.12, respectively). A lower accuracy of prediction was observed for methane intensity and production (R2val = 0.42 and 0.17) when daily records were used while prediction for methane yield was comparable to that for average methane yield (R2val = 0.16). Our results suggest the potential to predict methane intensity with moderate accuracy. In this case, prediction models for average methane values were generally better than for daily measures when using the GreenFeed system to obtain reference methane emission measurements.


Assuntos
Lactação , Metano , Animais , Bovinos , Dieta/veterinária , Feminino , Intestino Delgado , Leite/química , Gravidez
9.
Animal ; 15 Suppl 1: 100292, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34294547

RESUMO

The massive improvement in food production, as a result of effective genetic selection combined with advancements in farming practices, has been one of the greatest achievements of modern agriculture. For instance, the dairy cattle industry has more than doubled milk production over the past five decades, while the total number of cows has been reduced dramatically. This was achieved mainly through the intensification of production systems, direct genetic selection for milk yield and a limited number of related traits, and the use of modern technologies (e.g., artificial insemination and genomic selection). Despite the great betterment in production efficiency, strong drawbacks have occurred along the way. First, across-breed genetic diversity reduced dramatically, with the worldwide use of few common dairy breeds, as well as a substantial reduction in within-breed genetic diversity. Intensive selection for milk yield has also resulted in unfavorable genetic responses for traits related to fertility, health, longevity, and environmental sensitivity. Moving forward, the dairy industry needs to continue refining the current selection indexes and breeding goals to put greater emphasis on traits related to animal welfare, health, longevity, environmental efficiency (e.g., methane emission and feed efficiency), and overall resilience. This needs to be done through the definition of criteria (traits) that (a) represent well the biological mechanisms underlying the respective phenotypes, (b) are heritable, and (c) can be cost-effectively measured in a large number of animals and as early in life as possible. The long-term sustainability of the dairy cattle industry will also require diversification of production systems, with greater investments in the development of genetic resources that are resilient to perturbations occurring in specific farming systems with lesser control over the environment (e.g., organic, agroecological, and pasture-based, mountain-grazing farming systems). The conservation, genetic improvement, and use of local breeds should be integrated into the modern dairy cattle industry and greater care should be taken to avoid further genetic diversity losses in dairy cattle populations. In this review, we acknowledge the genetic progress achieved in high-yielding dairy cattle, closely related to dairy farm intensification, that reaches its limits. We discuss key points that need to be addressed toward the development of a robust and long-term sustainable dairy industry that maximize animal welfare (fundamental needs of individual animals and positive welfare) and productive efficiency, while also minimizing the environmental footprint, inputs required, and sensitivity to external factors.


Assuntos
Indústria de Laticínios , Leite , Bem-Estar do Animal , Animais , Bovinos/genética , Fazendas , Feminino , Seleção Genética
10.
J Dairy Sci ; 104(8): 9304-9315, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33934862

RESUMO

Genetic selection for improved feed efficiency in dairy cattle has received renewed attention over the last decade to address the needs of a growing global population. As milk yield is a critical component of feed efficiency metrics in dairy animals, our objective was to evaluate the associations between feed efficiency in primiparous Holstein cattle and parameters of a mathematical model describing individual lactation curves. The Dijkstra lactation curve model was fit to individual lactation records from 34 Holstein heifers with previously estimated measures of feed efficiency. We found that the optimal fit of the Dijkstra model was achieved using daily milk yield records up to 21 d in milk to capture the rise to peak milk yield and using monthly dairy herd improvement records for the remainder of lactation to accurately characterize lactation persistency. In the period of lactation before peak milk yield, improved feed efficiency was associated with a faster increase in daily milk yield over a shorter period of time at the expense of increased mobilization of body reserves; this serves to reinforce the concept that dairy cattle are primarily capital breeders versus income breeders. Feed efficiency in the period following peak lactation, as measured by gross feed efficiency, return over feed costs, and net energy efficiency of lactation, was positively associated with higher peak milk yield. The findings in early lactation suggest that estimates of feed efficiency could be improved by evaluating feed efficiency relative to conception, rather than parturition and lactation, to better account for the energy stored and released from body reserves in capital breeding.


Assuntos
Ração Animal , Ingestão de Alimentos , Ração Animal/análise , Animais , Bovinos , Feminino , Lactação , Leite , Paridade , Gravidez
11.
J Dairy Sci ; 104(8): 8983-9001, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34001361

RESUMO

Selecting for lower methane (CH4) emitting animals is one of the best approaches to reduce CH4 given that genetic progress is permanent and cumulative over generations. As genetic selection requires a large number of animals with records and few countries actively record CH4, combining data from different countries could help to expedite accurate genetic parameters for CH4 traits and build a future genomic reference population. Additionally, if we want to include CH4 in the breeding goal, it is important to know the genetic correlations of CH4 traits with other economically important traits. Therefore, the aim of this study was first to estimate genetic parameters of 7 suggested methane traits, as well as genetic correlations between methane traits and production, maintenance, and efficiency traits using a multicountry database. The second aim was to estimate genetic correlations within parities and stages of lactation for CH4. The third aim was to evaluate the expected response of economically important traits by including CH4 traits in the breeding goal. A total of 15,320 methane production (MeP, g/d) records from 2,990 cows belonging to 4 countries (Canada, Australia, Switzerland, and Denmark) were analyzed. Records on dry matter intake (DMI), body weight (BW), body condition score, and milk yield (MY) were also available. Additional traits such as methane yield (MeY; g/kg DMI), methane intensity (MeI; g/kg energy-corrected milk), a genetic standardized methane production, and 3 definitions of residual methane production (g/d), residual feed intake, metabolic BW (MBW), BW change, and energy-corrected milk were calculated. The estimated heritability of MeP was 0.21, whereas heritability estimates for MeY and MeI were 0.30 and 0.38, and for the residual methane traits heritability ranged from 0.13 to 0.16. Genetic correlations between different methane traits were moderate to high (0.41 to 0.97). Genetic correlations between MeP and economically important traits ranged from 0.29 (MY) to 0.65 (BW and MBW), being 0.41 for DMI. Selection index calculations showed that residual methane had the most potential for inclusion in the breeding goal when compared with MeP, MeY, and MeI, as residual methane allows for selection of low methane emitting animals without compromising other economically important traits. Inclusion of residual feed intake in the breeding goal could further reduce methane, as the correlation with residual methane is moderate and elicits a favorable correlated response. Adding a negative economic value for methane could facilitate a substantial reduction in methane emissions while maintaining an increase in milk production.


Assuntos
Lactação , Metano , Animais , Austrália , Canadá , Bovinos/genética , Dieta , Feminino , Lactação/genética , Leite , Suíça
12.
Animal ; 15(1): 100005, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33573960

RESUMO

A recently developed methodological approach for determining the greenhouse gas emissions impact of national breeding programs was applied to measure the effects of current and future breeding goals on the emission intensity (EI) of the Canadian dairy industry. Emission intensity is the ratio of greenhouse gas outputted in comparison to the product generated. Traits under investigation affected EI by either decreasing the direct emissions yield (i.e. increasing feed performance), changing herd structure (i.e. prolonging herd life) or through the dilution effect of increased production (i.e. increasing fat yield). The intensity value (IV) of each trait, defined as the change in emissions' intensity per unit change in each trait, was calculated for each of the investigated traits. The IV trend of these traits was compared for the current and prospective selection index, as well as for a system with and without quota (the supply management policy designed to prevent overproduction). The overall EI of the average genetic merit Canadian dairy herd per breeding female was 5.07 kg CO2eq/kg protein equivalent output. The annual reduction in EI due to the improvement of production traits was -0.027, -0.018 and -0.006 for fat, protein and milk other solids, respectively. The functional traits, herd life and mastitis resistance, had more modest effects (-0.008 and -0.001, respectively). These results are consistent with international studies that identified traits related to production, survival, health and fertility as having the largest impact on the environmental footprint of dairy cattle. Overall, the dairy industry is becoming more efficient by reducing its EI through selection of environmentally favorable traits, with a 1% annual reduction of EI in Canada.


Assuntos
Indústria de Laticínios , Leite , Animais , Canadá , Bovinos/genética , Meio Ambiente , Feminino , Estudos Prospectivos
13.
J Dairy Sci ; 104(2): 1928-1950, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33358171

RESUMO

The identification of functional genetic variants and associated candidate genes linked to feed efficiency may help improve selection for feed efficiency in dairy cattle, providing economic and environmental benefits for the dairy industry. This study used RNA-sequencing data obtained from liver tissue from 9 Holstein cows [n = 5 low residual feed intake (RFI), n = 4 high RFI] and 10 Jersey cows (n = 5 low RFI, n = 5 high RFI), which were selected from a single population of 200 animals. Using RNA-sequencing, 3 analyses were performed to identify: (1) variants within low or high RFI Holstein cattle; (2) variants within low or high RFI Jersey cattle; and (3) variants within low or high RFI groups, which are common across both Holstein and Jersey cattle breeds. From each analysis, all variants were filtered for moderate, modifier, or high functional effect, and co-localized quantitative trait loci (QTL) classes, enriched biological processes, and co-localized genes related to these variants, were identified. The overlapping of the resulting genes co-localized with functional SNP from each analysis in both breeds for low or high RFI groups were compared. For the first two analyses, the total number of candidate genes associated with moderate, modifier, or high functional effect variants fixed within low or high RFI groups were 2,810 and 3,390 for Holstein and Jersey breeds, respectively. The major QTL classes co-localized with these variants included milk and reproduction QTL for the Holstein breed, and milk, production, and reproduction QTL for the Jersey breed. For the third analysis, the common variants across both Holstein and Jersey breeds, uniquely fixed within low or high RFI groups were identified, revealing a total of 86,209 and 111,126 functional variants in low and high RFI groups, respectively. Across all 3 analyses for low and high RFI cattle, 12 and 31 co-localized genes were overlapping, respectively. Among the overlapping genes across breeds, 9 were commonly detected in both the low and high RFI groups (INSRR, CSK, DYNC1H1, GAB1, KAT2B, RXRA, SHC1, TRRAP, PIK3CB), which are known to play a key role in the regulation of biological processes that have high metabolic demand and are related to cell growth and regeneration, metabolism, and immune function. The genes identified and their associated functional variants may serve as candidate genetic markers and can be implemented into breeding programs to help improve the selection for feed efficiency in dairy cattle.


Assuntos
Ração Animal/análise , Bovinos/genética , Ingestão de Alimentos , Variação Genética/genética , Leite/metabolismo , Reprodução/genética , Animais , Bovinos/fisiologia , Indústria de Laticínios , Feminino , Fígado/fisiologia , Locos de Características Quantitativas/genética , RNA/genética , Análise de Sequência de RNA/veterinária
14.
Sci Rep ; 10(1): 20102, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208801

RESUMO

Fertility plays a key role in the success of calf production, but there is evidence that reproductive efficiency in beef cattle has decreased during the past half-century worldwide. Therefore, identifying animals with superior fertility could significantly impact cow-calf production efficiency. The objective of this research was to identify candidate regions affecting bull fertility in beef cattle and positional candidate genes annotated within these regions. A GWAS using a weighted single-step genomic BLUP approach was performed on 265 crossbred beef bulls to identify markers associated with scrotal circumference (SC) and sperm motility (SM). Eight windows containing 32 positional candidate genes and five windows containing 28 positional candidate genes explained more than 1% of the genetic variance for SC and SM, respectively. These windows were selected to perform gene annotation, QTL enrichment, and functional analyses. Functional candidate gene prioritization analysis revealed 14 prioritized candidate genes for SC of which MAP3K1 and VIP were previously found to play roles in male fertility. A different set of 14 prioritized genes were identified for SM and five were previously identified as regulators of male fertility (SOD2, TCP1, PACRG, SPEF2, PRLR). Significant enrichment results were identified for fertility and body conformation QTLs within the candidate windows. Gene ontology enrichment analysis including biological processes, molecular functions, and cellular components revealed significant GO terms associated with male fertility. The identification of these regions contributes to a better understanding of fertility associated traits and facilitates the discovery of positional candidate genes for future investigation of causal mutations and their implications.


Assuntos
Fertilidade/genética , Estudo de Associação Genômica Ampla/veterinária , Locos de Características Quantitativas , Escroto/fisiologia , Motilidade dos Espermatozoides/genética , Animais , Bovinos , Proteínas de Ciclo Celular/genética , Chaperonina com TCP-1/genética , Frequência do Gene , Masculino , Receptores da Prolactina/genética , Superóxido Dismutase/genética
15.
BMC Genomics ; 21(1): 703, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032519

RESUMO

BACKGROUND: Optimization of an RNA-Sequencing (RNA-Seq) pipeline is critical to maximize power and accuracy to identify genetic variants, including SNPs, which may serve as genetic markers to select for feed efficiency, leading to economic benefits for beef production. This study used RNA-Seq data (GEO Accession ID: PRJEB7696 and PRJEB15314) from muscle and liver tissue, respectively, from 12 Nellore beef steers selected from 585 steers with residual feed intake measures (RFI; n = 6 low-RFI, n = 6 high-RFI). Three RNA-Seq pipelines were compared including multi-sample calling from i) non-merged samples; ii) merged samples by RFI group, iii) merged samples by RFI and tissue group. The RNA-Seq reads were aligned against the UMD3.1 bovine reference genome (release 94) assembly using STAR aligner. Variants were called using BCFtools and variant effect prediction (VeP) and functional annotation (ToppGene) analyses were performed. RESULTS: On average, total reads detected for Approach i) non-merged samples for liver and muscle, were 18,362,086.3 and 35,645,898.7, respectively. For Approach ii), merging samples by RFI group, total reads detected for each merged group was 162,030,705, and for Approach iii), merging samples by RFI group and tissues, was 324,061,410, revealing the highest read depth for Approach iii). Additionally, Approach iii) merging samples by RFI group and tissues, revealed the highest read depth per variant coverage (572.59 ± 3993.11) and encompassed the majority of localized positional genes detected by each approach. This suggests Approach iii) had optimized detection power, read depth, and accuracy of SNP calling, therefore increasing confidence of variant detection and reducing false positive detection. Approach iii) was then used to detect unique SNPs fixed within low- (12,145) and high-RFI (14,663) groups. Functional annotation of SNPs revealed positional candidate genes, for each RFI group (2886 for low-RFI, 3075 for high-RFI), which were significantly (P < 0.05) associated with immune and metabolic pathways. CONCLUSION: The most optimized RNA-Seq pipeline allowed for more accurate identification of SNPs, associated positional candidate genes, and significantly associated metabolic pathways in muscle and liver tissues, providing insight on the underlying genetic architecture of feed efficiency in beef cattle.


Assuntos
Criação de Animais Domésticos , Fenômenos Fisiológicos da Nutrição Animal , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Criação de Animais Domésticos/métodos , Fenômenos Fisiológicos da Nutrição Animal/genética , Animais , Bovinos/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA/tendências
17.
J Dairy Sci ; 103(7): 6318-6331, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32418690

RESUMO

Milk fat composition has important implications in the nutritional and processing properties of milk. Additionally, milk fat composition is associated with cow physiological and health status. The main objectives of this study were (1) to estimate genetic parameters for 5 milk fatty acid (FA) groups (i.e., short-chain, medium-chain, long-chain, saturated, and unsaturated) predicted from milk infrared spectra using a large data set; (2) to predict genomic breeding values using a longitudinal single-step genomic BLUP approach; and (3) to conduct a single-step GWAS aiming to identify genomic regions, candidate genes, and metabolic pathways associated with milk FA, and consequently, to understand the underlying biology of these traits. We used 629,769 test-day records of 201,465 first-parity Holstein cows from 6,105 herds. A total of 8,865 genotyped (Illumina BovineSNP50K BeadChip, Illumina, San Diego, CA) animals were considered for the genomic analyses. The average daily heritability ranged from 0.24 (unsaturated FA) to 0.47 (medium-chain and saturated FA). The reliability of the genomic breeding values ranged from 0.56 (long-chain fatty acid) to 0.74 (medium-chain fatty acid) when using the default τ and ω scaling parameters, whereas it ranged from 0.58 (long-chain fatty acid) to 0.73 (short-chain fatty acid) when using the optimal τ and ω values (i.e., τ = 1.5 and ω = 0.6), as defined in a previous study in the same population. Relevant chromosomal regions were identified in Bos taurus autosomes 5 and 14. The proportion of the variance explained by 20 adjacent single nucleotide polymorphisms ranged from 0.71% (saturated FA) to 15.12% (long-chain FA). Important candidate genes and pathways were also identified. In summary, our results contribute to a better understanding of the genetic architecture of predicted milk FA in dairy cattle and reinforce the relevance of using genomic information for genetic analyses of these traits.


Assuntos
Bovinos/genética , Ácidos Graxos/metabolismo , Leite/química , Animais , Bovinos/fisiologia , Ácidos Graxos Insaturados/metabolismo , Feminino , Genômica , Genótipo , Lactação/genética , América do Norte , Paridade , Polimorfismo de Nucleotídeo Único , Gravidez , Reprodutibilidade dos Testes , Seleção Artificial
18.
J Dairy Sci ; 103(6): 5263-5269, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32307163

RESUMO

Milk fat content and fatty acid (FA) composition have great economic value to the dairy industry as they are directly associated with taste and chemical-physical characteristics of milk and dairy products. In addition, consumers' choices are not only based on the nutritional aspects of food, but also on products known to promote better health. Milk FA composition is also related to the metabolic status and physiological stages of cows and thus can also be used as indicator for other novel traits of interest (e.g., metabolic diseases and methane yield). Genetic selection is a promising alternative to manipulate milk FA composition. In this study, we aimed to (1) estimate time-dependent genetic parameters for 5 milk FA groups (i.e., short-chain, medium-chain, long-chain, saturated, and unsaturated) predicted based on milk mid-infrared spectroscopy, for Canadian Ayrshire and Jersey breeds, and (2) conduct a time-dependent, single-step genome-wide association study to identify genomic regions, candidate genes, and metabolic pathways associated with milk FA. We analyzed 31,709 test-day records of 9,648 Ayrshire cows from 268 herds, and 34,341 records of 11,479 Jersey cows from 883 herds. The genomic database contained a total of 2,330 Ayrshire and 1,019 Jersey animals. The average daily heritability ranged from 0.18 (long-chain FA) to 0.34 (medium-chain FA) in Ayrshire, and from 0.25 (long-chain and unsaturated FA) to 0.52 (medium-chain and saturated FA) in Jersey. Important genomic regions were identified in Bos taurus autosomes BTA3, BTA5, BTA12, BTA13, BTA14, BTA16, BTA18, BTA20, and BTA21. The proportion of the variance explained by 20 adjacent SNP ranged from 0.71% (saturated FA) to 1.11% (long-chain FA) in Ayrshire, and from 0.70% (unsaturated FA) to 3.09% (medium-chain FA) in Jersey cattle. Important candidate genes and pathways were also identified, such as the PTK2 and TRAPPC9 genes, associated with milk fat percentage, and HMGCS, FGF10, and C6 genes, associated with fertility traits and immune response. Our findings on the genetic parameters and candidate genes contribute to a better understanding of the genetic architecture of milk FA composition in Ayrshire and Jersey dairy cattle.


Assuntos
Cruzamento , Bovinos/genética , Ácidos Graxos/análise , Estudo de Associação Genômica Ampla/veterinária , Leite/química , Seleção Genética , Animais , Indústria de Laticínios , Feminino , Fenótipo , Espectrofotometria Infravermelho
19.
J Dairy Sci ; 103(6): 5346-5353, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32331881

RESUMO

Hoof lesions represent an important issue in modern dairy herds, with reported prevalence in different countries ranging from 40 to 70%. This high prevalence of hoof lesions has both economic and social consequences, resulting in increased labor expenses and decreasing animal production, longevity, reproduction, health, and welfare. Therefore, a key goal of dairy herds is to reduce the incidence of hoof lesions, which can be achieved both by improving management practices and through genetic selection. The Canadian dairy industry has recently released a hoof health sub-index. This national genetic evaluation program for hoof health was achieved by creating a centralized data collection system that routinely transfers data recorded by hoof trimmers into a coherent and sustainable national database. The 8 most prevalent lesions (digital dermatitis, interdigital dermatitis, interdigital hyperplasia, heel horn erosion, sole hemorrhage, sole ulcer, toe ulcer, and white line lesion) in Canada are analyzed with a multiple-trait model using a single-step genomic BLUP method. Estimated genomic breeding values for each lesion are combined into a sub-index according to their economic value and prevalence. In addition, data recorded within this system were used to create an interactive management report for dairy producers by Canadian DHI, including the prevalence of lesions on farm, their trends over time, and benchmarks with provincial and national averages.


Assuntos
Doenças dos Bovinos/genética , Doenças do Pé/veterinária , Casco e Garras , Seleção Genética , Animais , Cruzamento , Canadá , Bovinos , Doenças dos Bovinos/epidemiologia , Indústria de Laticínios , Fazendas , Feminino , Doenças do Pé/diagnóstico , Doenças do Pé/genética , Fenótipo , Prevalência
20.
Anim Genet ; 51(2): 200-209, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31913546

RESUMO

High blood cholesterol concentration, mainly caused by high dietary cholesterol, is a potential risk factor for human health. Dairy products are important sources of human dietary cholesterol intake. Therefore, monitoring bovine milk cholesterol concentration is important for human health benefit. Genetic selection for improvement of cow milk cholesterol content requires understanding of the genetics of milk cholesterol. For this purpose, we performed analyses of additive and dominance effects of 126 potentially functional SNPs within 43 candidate genes with milk cholesterol content [expressed as mg of cholesterol in 100 g of fat (CHL_fat) or in 100 mg of milk (CHL_milk)]. The additive and dominance effects of SNPs rs380643365 in AGPAT1 (P = 0.04) and rs134357240 in SOAT1 (P = 0.035) genes associated significantly with CHL_fat. Moreover, five (rs109326954 and rs523413537 in DGAT1, rs109376747 in LDLR, rs42781651 in FAM198B and rs109967779 in ACAT2) and four (rs137347384 in RBM19, rs109376747 in LDLR, rs42016945 in PPARG and rs110862179 in SCAP) SNPs were significantly associated with CHL_milk (P < 0.05) based on additive and dominance effect analyses respectively. Rs109326954 and rs523413537 in DGAT1 explained a considerable portion of the phenotypic variance of CHL_milk (7.54 and 6.84% respectively), and might be useful in selection programs for reduced milk cholesterol content. Several significantly associated SNPs were in genes (such as ACAT2 and LDLR) involved in cholesterol metabolism in the liver or cholesterol transport, suggesting multiple mechanisms regulating milk cholesterol content. Nine and seven SNPs identified by additive or dominance effect analyses associated significantly with milk yield and fat yield respectively. Further analyses are required to better understand the consequences of these variants and their potential use in genomic selection of the studied traits.


Assuntos
Bovinos/genética , Colesterol/metabolismo , Genótipo , Leite/química , Animais , Bovinos/metabolismo , Indústria de Laticínios , Feminino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...